Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202400723, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623783

RESUMO

Glycoside hydrolases (glycosidases) take part in myriad biological processes and are important therapeutic targets. Competitive and mechanism-based inhibitors are useful tools to dissect their biological role and comprise a good starting point for drug discovery. The natural product, cyclophellitol, a mechanism-based, covalent and irreversible retaining ß-glucosidase inhibitor has inspired the design of diverse α- and ß-glycosidase inhibitor and activity-based probe scaffolds. Here, we sought to deepen our understanding of the structural and functional requirements of cyclophellitol-type compounds for effective human α-glucosidase inhibition. We synthesized a comprehensive set of α-configured 1,2- and 1,5a-cyclophellitol analogues bearing a variety of electrophilic traps. The inhibitory potency of these compounds was assessed towards both lysosomal and ER retaining α-glucosidases. These studies revealed the 1,5a-cyclophellitols to be the most potent retaining α-glucosidase inhibitors, with the nature of the electrophile determining inhibitory mode of action (covalent or non-covalent). DFT calculations support the ability of the 1,5a-cyclophellitols, but not the 1,2-congeners, to adopt conformations that mimic either the Michaelis complex or transition state of α-glucosidases.

2.
Chembiochem ; 25(8): e202300865, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38442082

RESUMO

Mono-ADP-ribosylation is a dynamic post-translational modification (PTM) with important roles in cell signalling. This modification occurs on a wide variety of amino acids, and one of the canonical modification sites within proteins is the side chain of glutamic acid. Given the transient nature of this modification (acylal linkage) and the high sensitivity of ADP-ribosylated glutamic acid, stabilized isosteres are required for structural and biochemical studies. Here, we report the synthesis of a mimic of ADP-ribosylated peptide derived from histone H2B that contains carba-ADP-ribosylated glutamine as a potential mimic for Glu-ADPr. We synthesized a cyclopentitol-ribofuranosyl derivative of 5'-phosphoribosylated Fmoc-glutamine and used this in the solid-phase synthesis of the carba-ADPr-peptide mimicking the ADP-ribosylated N-terminal tail of histone H2B. Binding studies with isothermal calorimetry demonstrate that the macrodomains of human MacroD2 and TARG1 bind to carba-ADPr-peptide in the same way as ADPr-peptides containing the native ADP-riboside moiety connected to the side chain of glutamine in the same peptide sequence.


Assuntos
Glutamina , Histonas , Humanos , Glutamina/química , Glutamina/metabolismo , Histonas/metabolismo , Peptídeos/química , ADP-Ribosilação , Glutamatos/metabolismo
3.
Angew Chem Weinheim Bergstr Ger ; 136(4): e202313317, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516349

RESUMO

The transfer of an adenosine diphosphate (ADP) ribose moiety to a nucleophilic side chain by consumption of nicotinamide adenine dinucleotide is referred to as ADP-ribosylation, which allows for the spatiotemporal regulation of vital processes such as apoptosis and DNA repair. Recent mass-spectrometry based analyses of the "ADP-ribosylome" have identified histidine as ADP-ribose acceptor site. In order to study this modification, a fully synthetic strategy towards α-configured N(τ)- and N(π)-ADP-ribosylated histidine-containing peptides has been developed. Ribofuranosylated histidine building blocks were obtained via Mukaiyama-type glycosylation and the building blocks were integrated into an ADP-ribosylome derived peptide sequence using fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis. On-resin installation of the ADP moiety was achieved using phosphoramidite chemistry, and global deprotection provided the desired ADP-ribosylated oligopeptides. The stability under various chemical conditions and resistance against (ADP-ribosyl) hydrolase-mediated degradation has been investigated to reveal that the constructs are stable under various chemical conditions and non-degradable by any of the known ADP-ribosylhydrolases.

4.
J Org Chem ; 89(3): 1618-1625, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38235652

RESUMO

Minimal structural differences in the structure of glycosyl donors can have a tremendous impact on their reactivity and the stereochemical outcome of their glycosylation reactions. Here, we used a combination of systematic glycosylation reactions, the characterization of potential reactive intermediates, and in-depth computational studies to study the disparate behavior of glycosylation systems involving benzylidene glucosyl and mannosyl donors. While these systems have been studied extensively, no satisfactory explanations are available for the differences observed between the 3-O-benzyl/benzoyl mannose and glucose donor systems. The potential energy surfaces of the different reaction pathways available for these donors provide an explanation for the contrasting behavior of seemingly very similar systems. Evidence has been provided for the intermediacy of benzylidene mannosyl 1,3-dioxanium ions, while the formation of the analogous 1,3-glucosyl dioxanium ions is thwarted by a prohibitively strong flagpole interaction of the C-2-O-benzyl group with the C-5 proton in moving toward the transition state, in which the glucose ring adopts a B2,5-conformation. This study provides an explanation for the intermediacy of 1,3-dioxanium ions in the mannosyl system and an answer to why these do not form from analogous glucosyl donors.

5.
Angew Chem Int Ed Engl ; 63(4): e202313317, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37903139

RESUMO

The transfer of an adenosine diphosphate (ADP) ribose moiety to a nucleophilic side chain by consumption of nicotinamide adenine dinucleotide is referred to as ADP-ribosylation, which allows for the spatiotemporal regulation of vital processes such as apoptosis and DNA repair. Recent mass-spectrometry based analyses of the "ADP-ribosylome" have identified histidine as ADP-ribose acceptor site. In order to study this modification, a fully synthetic strategy towards α-configured N(τ)- and N(π)-ADP-ribosylated histidine-containing peptides has been developed. Ribofuranosylated histidine building blocks were obtained via Mukaiyama-type glycosylation and the building blocks were integrated into an ADP-ribosylome derived peptide sequence using fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase peptide synthesis. On-resin installation of the ADP moiety was achieved using phosphoramidite chemistry, and global deprotection provided the desired ADP-ribosylated oligopeptides. The stability under various chemical conditions and resistance against (ADP-ribosyl) hydrolase-mediated degradation has been investigated to reveal that the constructs are stable under various chemical conditions and non-degradable by any of the known ADP-ribosylhydrolases.


Assuntos
Histidina , Técnicas de Síntese em Fase Sólida , Histidina/metabolismo , Peptídeos/química , ADP-Ribosilação , Difosfato de Adenosina/metabolismo , Adenosina Difosfato Ribose/química
6.
Chem Sci ; 14(46): 13581-13586, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033892

RESUMO

Class I inverting exo-acting α-1,2-mannosidases (CAZY family GH47) display an unusual catalytic itinerary featuring ring-flipped mannosides, 3S1 → 3H4‡ → 1C4. Conformationally locked 1C4 compounds, such as kifunensine, display nanomolar inhibition but large multigene GH47 mannosidase families render specific "isoform-dependent" inhibition impossible. Here we develop a bump-and-hole strategy in which a new mannose-configured 1,6-trans-cyclic sulfamidate inhibits α-d-mannosidases by virtue of its 1C4 conformation. This compound does not inhibit the wild-type GH47 model enzyme by virtue of a steric clash, a "bump", in the active site. An L310S (a conserved residue amongst human GH47 enzymes) mutant of the model Caulobacter GH47 awoke 574 nM inhibition of the previously dormant inhibitor, confirmed by structural analysis of a 0.97 Å structure. Considering that L310 is a conserved residue amongst human GH47 enzymes, this work provides a unique framework for future biotechnological studies on N-glycan maturation and ER associated degradation by isoform-specific GH47 α-d-mannosidase inhibition through a bump-and-hole approach.

7.
Org Biomol Chem ; 21(38): 7813-7820, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37724332

RESUMO

Acid ß-galactosidase (GLB1) and galactocerebrosidase (GALC) are retaining exo-ß-galactosidases involved in lysosomal glycoconjugate metabolism. Deficiency of GLB1 may result in the lysosomal storage disorders GM1 gangliosidosis, Morquio B syndrome, and galactosialidosis, and deficiency of GALC may result in Krabbe disease. Activity-based protein profiling (ABPP) is a powerful technique to assess the activity of retaining glycosidases in relation to health and disease. This work describes the use of fluorescent and biotin-carrying activity-based probes (ABPs) to assess the activity of both GLB1 and GALC in cell lysates, culture media, and tissue extracts. The reported ABPs, which complement the growing list of retaining glycosidase ABPs based on configurational isomers of cyclophellitol, should assist in fundamental and clinical research on various ß-galactosidases, whose inherited deficiencies cause debilitating lysosomal storage disorders.


Assuntos
Gangliosidose GM1 , Leucodistrofia de Células Globoides , Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose IV , Humanos , beta-Galactosidase/metabolismo , Galactosilceramidase
8.
J Med Chem ; 66(16): 11390-11398, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37561481

RESUMO

The anthracycline anti-cancer drugs are intensely used in the clinic to treat a wide variety of cancers. They generate DNA double strand breaks, but recently the induction of chromatin damage was introduced as another major determinant of anti-cancer activity. The combination of these two events results in their reported side effects. While our knowledge on the structure-activity relationship of anthracyclines has improved, many structural variations remain poorly explored. Therefore, we here report on the preparation of a diverse set of anthracyclines with variations within the sugar moiety, amine alkylation pattern, saccharide chain and aglycone. We assessed the cytotoxicity in vitro in relevant human cancer cell lines, and the capacity to induce DNA- and chromatin damage. This coherent set of data allowed us to deduce a few guidelines on anthracycline design, as well as discover novel, highly potent anthracyclines that may be better tolerated by patients.


Assuntos
Antraciclinas , Neoplasias , Humanos , Antraciclinas/farmacologia , Antraciclinas/química , Doxorrubicina/farmacologia , Antibióticos Antineoplásicos/química , Inibidores da Topoisomerase II , Cromatina , DNA/metabolismo , Neoplasias/tratamento farmacológico
9.
J Org Chem ; 88(15): 10801-10809, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37464783

RESUMO

Adenosine diphosphate ribosylation (ADP-ribosylation) is a crucial post-translational modification involved in important regulatory mechanisms of numerous cellular pathways including histone maintenance and DNA damage repair. To study this modification, well-defined ADP-ribosylated peptides, proteins, and close analogues thereof have been invaluable tools. Recently, proteomics studies have revealed histidine residues to be ADP-ribosylated. We describe here the synthesis of a complete set of triazole-isosteres of ADP-ribosylated histidine to serve as probes for ADP-ribosylating biomachinery. By exploiting Cu(I)- and Ru(II)-catalyzed click chemistry between a propargylglycine building block and an α- or ß-configured azidoribose, we have successfully assembled the α- and ß-configured 1,4- and 1,5-triazoles, mimicking N(τ)- and N(π)-ADP-ribosylated histidine, respectively. The ribosylated building blocks could be incorporated into a peptide sequence using standard solid-phase peptide synthesis and transformed on resin into the ADP-ribosylated fragments to provide a total of four ADP-ribosyl triazole conjugates, which were evaluated for their chemical and enzymatic stability. The 1,5-triazole analogues mimicking the N(π)-substituted histidines proved susceptible to base-induced epimerization and the ADP-ribosyl α-1,5-triazole linkage could be cleaved by the (ADP-ribosyl)hydrolase ARH3.


Assuntos
Química Click , Histidina , Adenosina Difosfato Ribose , Catálise , Triazóis
10.
ACS Cent Sci ; 9(7): 1388-1399, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37521780

RESUMO

Although leprosy (Hansen's disease) is one of the oldest known diseases, the pathogenicity of Mycobacterium leprae (M. leprae) remains enigmatic. Indeed, the cell wall components responsible for the immune response against M. leprae are as yet largely unidentified. We reveal here phenolic glycolipid-III (PGL-III) as an M. leprae-specific ligand for the immune receptor Mincle. PGL-III is a scarcely present trisaccharide intermediate in the biosynthetic pathway to PGL-I, an abundant and characteristic M. leprae glycolipid. Using activity-based purification, we identified PGL-III as a Mincle ligand that is more potent than the well-known M. tuberculosis trehalose dimycolate. The cocrystal structure of Mincle and a synthetic PGL-III analogue revealed a unique recognition mode, implying that it can engage multiple Mincle molecules. In Mincle-deficient mice infected with M. leprae, increased bacterial burden with gross pathologies were observed. These results show that PGL-III is a noncanonical ligand recognized by Mincle, triggering protective immunity.

11.
Org Lett ; 25(27): 4980-4984, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37338412

RESUMO

Adenosine diphosphate (ADP) ribosylation is an important post-translational modification (PTM) that plays a role in a wide variety of cellular processes. To study the enzymes responsible for the establishment, recognition, and removal of this PTM, stable analogues are invaluable tools. We describe the design and synthesis of a 4-thioribosyl APRr peptide that has been assembled by solid phase synthesis. The key 4-thioribosyl serine building block was obtained in a stereoselective glycosylation reaction using an alkynylbenzoate 4-thioribosyl donor.


Assuntos
ADP-Ribosilação , Adenosina Difosfato Ribose , Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Peptídeos , Glicosilação , Difosfato de Adenosina
12.
J Am Chem Soc ; 145(25): 14052-14063, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37310804

RESUMO

Zwitterionic polysaccharides (ZPSs) are exceptional carbohydrates, carrying both positively charged amine groups and negatively charged carboxylates, that can be loaded onto MHC-II molecules to activate T cells. It remains enigmatic, however, how these polysaccharides bind to these receptors, and to understand the structural features responsible for this "peptide-like" behavior, well-defined ZPS fragments are required in sufficient quantity and quality. We here present the first total synthesis of Bacteroides fragilis PS A1 fragments encompassing up to 12 monosaccharides, representing three repeating units. Key to our successful syntheses has been the incorporation of a C-3,C-6-silylidene-bridged "ring-inverted" galactosamine building block that was designed to act as an apt nucleophile as well as a stereoselective glycosyl donor. Our stereoselective synthesis route is further characterized by a unique protecting group strategy, built on base-labile protecting groups, which has allowed the incorporation of an orthogonal alkyne functionalization handle. Detailed structural studies have revealed that the assembled oligosaccharides take up a bent structure, which translates into a left-handed helix for larger PS A1 polysaccharides, presenting the key positively charged amino groups to the outside of the helix. The availability of the fragments and the insight into their secondary structure will enable detailed interaction studies with binding proteins to unravel the mode of action of these unique oligosaccharides at the atomic level.


Assuntos
Bacteroides fragilis , Polissacarídeos Bacterianos , Polissacarídeos Bacterianos/química , Bacteroides fragilis/química , Oligossacarídeos , Monossacarídeos , Linfócitos T
13.
Chem Sci ; 14(6): 1532-1542, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794180

RESUMO

The reactivity of the acceptor alcohol can have a tremendous influence on the outcome of a glycosylation reaction, both in terms of yield and stereoselectivity. Through a systematic survey of 67 acceptor alcohols in glycosylation reactions with two glucosyl donors we here reveal how the reactivity of a carbohydrate acceptor depends on its configuration and substitution pattern. The study shows how the functional groups flanking the acceptor alcohol influence the reactivity of the alcohol and show that both the nature and relative orientation play an essential role. The empiric acceptor reactivity guidelines revealed here will aid in the rational optimization of glycosylation reactions and be an important tool in the assembly of oligosaccharides.

14.
Angew Chem Int Ed Engl ; 62(1): e202211940, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36350770

RESUMO

We herein report the first total synthesis of the Streptococcus pneumoniae serotype 1 (Sp1) oligosaccharide, a unique zwitterionic capsular polysaccharide carrying labile O-acetyl esters. The target oligosaccharides, featuring rare α-2,4-diamino-2,4,6-trideoxy galactose (AAT) and α-galacturonic acids, were assembled up to the 9-mer level, in a highly stereoselective manner using trisaccharide building blocks. The lability of the O-acetyl esters imposed a careful deprotection scheme to prevent migration and hydrolysis. The migration was investigated in detail at various pD values using NMR spectroscopy, to show that migration and hydrolysis of the C-3-O-acetyl esters readily takes place under neutral conditions. Structural investigation showed the oligomers to adopt a right-handed helical structure with the acetyl esters exposed on the periphery of the helix in close proximity of the neighboring AAT residues, thereby imposing conformational restrictions on the AATα1-4GalA(3OAc) glycosidic linkages, supporting the helical shape of the polysaccharide, that has been proposed to be critical for its unique biological activity.


Assuntos
Polissacarídeos Bacterianos , Streptococcus pneumoniae , Polissacarídeos Bacterianos/química , Oligossacarídeos , Trissacarídeos/química , Glicosídeos
15.
J Am Chem Soc ; 144(45): 20582-20589, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318515

RESUMO

We describe the development and optimization of a methodology to prepare peptides and proteins modified on the arginine residue with an adenosine-di-phosphate-ribosyl (ADPr) group. Our method comprises reacting an ornithine containing polypeptide on-resin with an α-linked anomeric isothiourea N-riboside, ensuing installment of a phosphomonoester at the 5'-hydroxyl of the ribosyl moiety followed by the conversion into the adenosine diphosphate. We use this method to obtain four regioisomers of ADP-ribosylated ubiquitin (UbADPr), each modified with an ADP-ribosyl residue on a different arginine position within the ubiquitin (Ub) protein (Arg42, Arg54, Arg72, and Arg74) as the first reported examples of fully synthetic arginine-linked ADPr-modified proteins. We show the chemically prepared Arg-linked UbADPr to be accepted and processed by Legionella enzymes and compare the entire suite of four Arg-linked UbADPr regioisomers in a variety of biochemical experiments, allowing us to profile the activity and selectivity of Legionella pneumophila ligase and hydrolase enzymes.


Assuntos
Adenosina Difosfato Ribose , Arginina , Adenosina Difosfato Ribose/química , Arginina/metabolismo , ADP-Ribosilação , Ubiquitina/química , Proteínas Ubiquitinadas/metabolismo , Peptídeos/química
16.
Angew Chem Int Ed Engl ; 61(42): e202209401, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35980341

RESUMO

Acetal substitution reactions of α-halogenated five- and six-membered rings can be highly stereoselective. Erosion of stereoselectivity occurs as nucleophilicity increases, which is consistent with additions to a halogen-stabilized oxocarbenium ion, not a three-membered-ring halonium ion. Computational investigations confirmed that the open-form oxocarbenium ions are the reactive intermediates involved. Kinetic studies suggest that hyperconjugative effects and through-space electrostatic interactions can both contribute to the stabilization of halogen-substituted oxocarbenium ions.


Assuntos
Acetais , Halogênios , Íons , Cinética , Estereoisomerismo
17.
JACS Au ; 2(7): 1724-1735, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35911445

RESUMO

Group B Streptococcus (GBS) is a Gram-positive bacterium and the most common cause of neonatal blood and brain infections. At least 10 different serotypes exist, that are characterized by their different capsular polysaccharides. The Group B carbohydrate (GBC) is shared by all serotypes and therefore attractive be used in a glycoconjugate vaccine. The GBC is a highly complex multiantennary structure, composed of rhamnose rich oligosaccharides interspaced with glucitol phosphates. We here report the development of a convergent approach to assemble a pentamer, octamer, and tridecamer fragment of the termini of the antennae. Phosphoramidite chemistry was used to fuse the pentamer and octamer fragments to deliver the 13-mer GBC oligosaccharide. Nuclear magnetic resonance spectroscopy of the generated fragments confirmed the structures of the naturally occurring polysaccharide. The fragments were used to generate model glycoconjugate vaccine by coupling with CRM197. Immunization of mice delivered sera that was shown to be capable of recognizing different GBS strains. The antibodies raised using the 13-mer conjugate were shown to recognize the bacteria best and the serum raised against this GBC fragment-mediated opsonophagocytic killing best, but in a capsule dependent manner. Overall, the GBC 13-mer was identified to be a highly promising antigen for incorporation into future (multicomponent) anti-GBS vaccines.

18.
J Am Chem Soc ; 144(32): 14819-14827, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35917590

RESUMO

α-Glucosidase inhibitors are potential therapeutics for the treatment of diabetes, viral infections, and Pompe disease. Herein, we report a 1,6-epi-cyclophellitol cyclosulfamidate as a new class of reversible α-glucosidase inhibitors that displays enzyme inhibitory activity by virtue of its conformational mimicry of the substrate when bound in the Michaelis complex. The α-d-glc-configured cyclophellitol cyclosulfamidate 4 binds in a competitive manner the human lysosomal acid α-glucosidase (GAA), ER α-glucosidases, and, at higher concentrations, intestinal α-glucosidases, displaying an excellent selectivity over the human ß-glucosidases GBA and GBA2 and glucosylceramide synthase (GCS). Cyclosulfamidate 4 stabilizes recombinant human GAA (rhGAA, alglucosidase alfa, Myozyme) in cell medium and plasma and facilitates enzyme trafficking to lysosomes. It stabilizes rhGAA more effectively than existing small-molecule chaperones and does so in vitro, in cellulo, and in vivo in zebrafish, thus representing a promising therapeutic alternative to Miglustat for Pompe disease.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Animais , Cicloexanóis , Glucana 1,4-alfa-Glucosidase/metabolismo , Glicogênio/metabolismo , Glicogênio/uso terapêutico , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Doença de Depósito de Glicogênio Tipo II/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Peixe-Zebra/metabolismo , alfa-Glucosidases/metabolismo
19.
J Org Chem ; 87(14): 9139-9147, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35748115

RESUMO

The stereoselective introduction of glycosidic bonds is of paramount importance to oligosaccharide synthesis. Among the various chemical strategies to steer stereoselectivity, participation by either neighboring or distal acyl groups is used particularly often. Recently, the use of the 2,2-dimethyl-2-(ortho-nitrophenyl)acetyl (DMNPA) protection group was shown to offer enhanced stereoselective steering compared to other acyl groups. Here, we investigate the origin of the stereoselectivity induced by the DMNPA group through systematic glycosylation reactions and infrared ion spectroscopy (IRIS) combined with techniques such as isotopic labeling of the anomeric center and isomer population analysis. Our study indicates that the origin of the DMNPA stereoselectivity does not lie in the direct participation of the nitro moiety but in the formation of a dioxolenium ion that is strongly stabilized by the nitro group.


Assuntos
Glicosídeos , Glicosídeos/química , Glicosilação , Íons , Espectrofotometria Infravermelho , Estereoisomerismo
20.
Org Lett ; 24(21): 3776-3780, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35587229

RESUMO

A convergent synthesis provided nearly perfect τ-ADP-ribosylated histidine isosteres (His*-τ-ADPr) via a copper(I)-catalyzed cycloaddition between an azido-ADP-ribosyl analogue and an oligopeptide carrying a propargyl glycine. Both α- and ß-configured azido-ADP-ribosyl analogues have been synthesized. The former required participation of the C-2 ester functionality during glycosylation, while the latter was obtained in high stereoselectivity from an imidate donor with a nonparticipating para-methoxy benzyl ether. Four His*-τ-ADPr peptides were screened against a library of human ADP-ribosyl hydrolases.


Assuntos
Química Click , Cobre , Difosfato de Adenosina , Catálise , Histidina , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...